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Abstract: 

Stem cell-based therapy has been tested for several diseases, including neurodegenerative disorders, such 

as Parkinson’s disease, spinal cord injury, and multiple sclerosis in animal models. The replacement of 

lost neurons that are not physiologically replaced is pivotal for therapeutic success. In the eye, 

degeneration of neural cells in the retina are hallmarks of such wide-spread ocular diseases as AMD and 

RP. In these cases the primary cause of blindness is due to loss of photoreceptors. This can result from 

dysfunction in either the PRC or the underlying RPE that supports their survival. 

Transplantation of RSC with the potential to generate new retinal cells provides an alternative approach 

to enable the replacement of lost PRC or RPE. Retinal stem cells may restore vision in patients who have 

degenerative retinal diseases by two possible means: 1) repopulation of the damaged retina (e.g., PRC); 

and/or 2) rescue of retinal neurons from further degeneration.80 Different research groups have 

successfully isolated murine putative RSC from the ciliary margin (CM) and human RSC in the pars 

plana and pars plicata.81,82 However, the transplantation of these cells in normal and degenerative rodent 

retina was only minimally successful due to the limited ability of the cells to invade and integrate into the 

host retina.27 On the other hand, transplantation of immature post-mitotic rod precursors from 

developing retina (postnatal day 1) improves retinal integration.83 The optimal result occurs when 

selected cells were biochemically committed but not yet morphologically differentiated. The capability of 

subretinally or intravitreously injected RSC to invade and integrate into the neural retina remains 

restricted to sites of retinal injury. Breakdown of physical barriers, such as the outer limiting membrane, 

and/or release of unknown neurotrophic factors, are most likely required to stimulate RSC integration.84 

To date only sparse data are available regarding factors that might stimulate migration, integration, and 

differentiation of RSC into the neural retina. 
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INTRODUCTION 

 
It is assumed that neurotrophic factors, such as transforming growth factor (TGF-beta 3),85 

fibroblast growth factor (FGF),86 or epidermal growth factor (EGF),87,88 might play a role. Recent 

evidence has suggested that hepatocyte growth factor/scatter factor (HGF/SF), a pleiotrophic factor with 

mitogenic, and morphogenic activities, may also be involved in the development and maintenance of 

neurons and PRC. 
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The replacement of diseased RPE in AMD would be pivotal to protect or rescue the adjacent 

PRC. Unfortunately, no convincing animal model for AMD exists to date. Therefore, the sodium iodate 

(NaIO3) model of RPE damage, established by G.E. Korte in 1984,90 has been used to study at least the 

repopulation of bare areas of normal Bruch’s membrane.91 Briefly, the selective and patchy degeneration 

of the RPE monolayer after i.v. NaIO3 injection is directly correlated to decreased visual function, 

decreased electrophysiological function and anatomical cell loss in the RPE . 

 
The extent of the RPE damage is time and concentration-dependent. Interestingly, NaIO3- 

damaged RPE cells express higher amounts of cytokine/growth factors involved in SC homing. After 

treatment with NaIO3, murine RPE cells express higher levels of SDF-1, as well as other signaling factors 

(complement factor C3 and HGF/SF). SDF-1 is a chemokine whose receptor CXCR4 is expressed on 

bone marrow-derived progenitor cells and stem cells.93 While there was no evident change in vascular 

endothelial growth factor and Rantes, there was increased expression of the cytokine leukocyte inhibitory 

factor, known to promote self-renewal in ESC.94 Furthermore, supernatants of NaIO3–damaged RPE exert 

a priming effect on BMSC migration in vitro as they enhanced their transwell migration.94 These results 

provide evidence that damage to the RPE leads to production of soluble factors that can cause specific 

chemotaxis of BMSC and raise the possibility of their recruitment to the site of damage. These data 

support the possibility of using BMSC to replace damaged cells, especially RPE, in eyes with retinal 

degenerations. To investigate this further, we have undertaken endogenous as well as exogenous 

approaches using BMSC using the above described NaIO3 model. Endogenous refers to existing bone 

marrow cells in the host while exogenous refers to adoptively transferred cells. 

 
Sodium iodate model of retinal pligment epithelium (RPE) degeneration A-F, Autofluorescence 

in flat-mount whole-eye preparations of control (D) and sodium iodate-treated mice (A-C,E, and F). The 

top row (A-C) compared different doses of sodium iodate at 7 days postinjection (P1): 35 mg/kg (A), 50 

mg/kg(B), and 70 mg/kg (C) of body weight, E, B, and F compare different times PI at the same dose (50 

mg/kg) : 3 days PI (E): 7 days PI (B)L and 21 days PI (F). Beinning on 3 days PI, a patchy loss of RPE 

can be detected by the decrease in autofluorescence (black areas). The total area bare of RPE 

(autofluorescent areas) is dose dependent and increased over time (original magnification x 1000). 

 

Review of literature 

 
The use of stem cells to replace degenerated RPE cells has not yet demonstrated the ability to 

rescue photoreceptors cells at risk of damage. If stem cell differentiation and reconstitution of the 

damaged RPE monolayer occurs after photoreceptor degeneration, a rescue effect will not be possible. 

Alternatively, if the mobilization of endogenous stem cells occurs continuously or over a prolonged 

period of time, photoreceptor damage and/or rescue may be possible.96 
 

The regenerative capability of BMSC in the ocular system is not only restricted to RPE 

replacement. Chiou et al. showed that BMSC have multilineage differentiation potential in vitro and 

differentiate into retinal cells and photoreceptor lineages after co-culture with RPE cells.97 Other groups 

have followed different approaches to replace diseased RPE cells. Haruta and colleagues harvested RPE- 

like ESC in vitro and achieved functional improvement after subretinal transplantation into RCS rats.98 
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Only a small percentage of total bone marrow cells are chemoattracted to supernatants from 

damaged RPE in vitro, as well as into damaged RPE in vivo, the properties of this subset of BM-derived 

cells need to be considered. Recent data indicate that the CD45+ population of stem cells is committed to 

hematopoietic lineages, while the CD45− population is believed to remain pluripotent and thus capable of 

differentiation into various non-hematopoietic tissues. 

 
Kucia et al. showed that CD45− BMSC are comprised of subsets of cells already committed to 

skeletal muscle, heart muscle, liver and neural tissues.55 These so called TCSC, more recently re-named 

very small embryonic-like cells (VSEL)100 express Oct-4, a stem cell marker, in addition to markers of 

tissue-specific progenitors. These TCSC are mobilized into PB during organ injury.101 SDF-1-based 

chemotactic isolation combined with RT-PCR analysis of mRNA revealed that early TCSC: 1) reside in 

the normal human and murine BM; 2) express CXCR4 on their surface; and 3) can be highly enriched in 

humans and mice after chemotaxis to an SDF-1 gradient. These studies were performed on freshly 

isolated cells, ruling out the potential contribution of culture-related transdifferentiated HSC or 

mesenchymal cells. In our experiments we found that Sca-1+ CD45− BMSC are highly enriched in mRNA 

for retinal/RPE progenitors (Six-3, OTX, Pax-6, MITF; data not shown) and furthermore, that this is the 

subset of BMSC that has migrated in response to supernatants from damaged RPE in transwell assays. 

Thus, it appears that RPE-committed VSEL cells (approximately 0.05% of the population) are present 

within the Sca-1+ CD45− subset of BMSC. This is supported by data from in vitro experiments using a co- 

culture of BMSC and RPE cells to trigger SC differentiation into the RPE-lineage . 

 

Material and method 

 
Two types of approaches can be used to promote stem-cell-mediated regenerative repair of RPE: 

endogenous and exogenous. Endogenously, RPE injury combined with pharmacologically enhanced 

growth factor-mediated mobilization lead to migration of BM-derived cells into the subretinal space. 

BMSC (c-kit+), macrophages (F4/80) and leukocytes such as granulocytes, monocytes (CD11b) could be 

identified. Thereby, the number of c-kit+ BMSC in the eye after NaIO3 injection and mobilization 

increased dramatically compared to the mobilized control mice who did not have RPE damage.91 The 

migrated BMSC had incorporated in a monolayer along the RPE four weeks after transplantation and 

expressed the RPE markers RPE-65 and MITF (Figure 2). These findings suggest that bone marrow- 
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derived stem cells are attracted to damaged RPE and are induced to differentiate into components of RPE. 

Mobilization enhances the outcome.  
 

Figure 2 R??EPE-65 and MITF 

Expression of RPE markers RPE-65 and MITF 

The results above demonstrated that a physiological process is in place in vivo to recruit stem 

cells to the damaged RPE and that endogenous BM-derived cells are able to integrate into the damaged 

RPE and express markers of RPE differentiation. Nevertheless, the significant experimental damage to 

the RPE could not be repaired by this endogenous approach, nor does this endogenous program appear 

capable of repairing or preventing the progressive damage to the RPE that occurs in AMD and retinitis 

pigmentosa. Thus, it appears that such recruitment of endogenous cells may not be sufficient to 

physiologically repair significant damage to the RPE in the same fashion that recruitment of endogenous 

SC cannot repair major damage to spinal cord or heart. 

 
To optimize number and availability of circulating BMSC, we then examined an exogenous 

approach for regeneration of damaged RPE. Additionally, this allows us to define the precise cell types 

involved using cell sorting as opposed to the mixture of stem cells and other BM-derived cells mobilized 

into the periphery with the endogenous approach. We injected FACS-sorted BMSC with the phenotype 

lin− (negative for all lineages of differentiated BM cells), stem cell antigen 1 (Sca-1)-positive 

intravenously (i.v.) into NaIO3 treated animals. BMSC could be detected in the subretinal space on 

Bruch's membrane in areas of RPE loss on day four after cell injection, whereas controls without NaIO3 

injection showed no BMSC. The double staining for Sca-1 and green fluorescence protein (GFP) 

confirms the BM origin of the cells systemically transferred and confirms that HSC home to the area of 

damaged RPE after NaIO3 injection. One and two weeks after transfer, BMSC could be identified in the 

subretinal space but they did not express RPE markers. Immunocytochemical staining showed the 

expression of RPE-65 in BMSC four and six weeks after transplantation. These results suggest that, as 

with the endogenous cells, BMSC injected systemically into the host home to the site of damage where 

they integrate and express markers of RPE differentiation in a time-dependent fashion.95. 

http://www.ijrst.com/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3192438/figure/F2/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3192438/#R95


International Journal of Research in Science And Technology http://www.ijrst.com 

(IJRST) 2013, Vol. No. 3, Issue No. 4, Oct-Dec ISSN: 2249-0604 

35  

INTERNATIONAL JOURNAL OF RESEARCH IN SCIENCE AND TECHNOLOGY 

 

 

 

 

Figure 3 Immunocytochemical staining of vertical sections of a GFP chimeric 

Mouse eye four weeks after NaIO3 treatment and BMC mobilization 

A third route for BMSC delivery is by direct subretinal injection. It is observed that subretinally 

injected BMSC integrated into the RPE and expressed markers of differentiation (e.g., RPE65). The 

optimal route for SC delivery remains to be determined. Concentrating the cells might provide a kinetic 

advantage for incorporation of the cells into the altered tissue. Thereby, the cells would not have to home 

to sites of damage from the circulation. 

 
BMSC changed their morphology from round to epithelial–like and expressed the epithelial 

markers cytokeratin, MITF - expressed on common progenitors of retina and RPE and persisting 

expression following RPE differentiation (its expression diminishes in cells that progress along a retina 

lineage), and the RPE-specific marker RPE-65 after two weeks. The process required direct cell-cell 

contact between BMSC and RPE. No staining for RPE markers was detected when a membrane separated 

the two populations of cells. This was a specific effect, as no positive staining was detected when RPE 

cells were replaced with fibroblasts.91 
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Figure 4Co-culture with RPE cells for two weeks leads to the expression of 

RPE-specific markers on sorted Sca-1+ BMSC 

 

Figure 5Cross section of a mouse eye six weeks after NaIO3 

injection and i.v. transplantation of EGFP+ BMSC 

 

Conclusions: 

 
It is important to note that degenerations in the mammalian retina, initiated by defects in 

photoreceptors or RPE, often leave the neural retina deafferented. It responds to this challenge by 

remodelling, first by subtle changes in neuronal structure and later by large-scale reorganization and 

represents the invocation of mechanisms resembling developmental and CNS plasticity. This neuronal 

remodelling and the formation of a glial seal may abrogate many cellular and bionic rescue strategies. On 

the other hand, survivor neurons appear to be stable, healthy, active cells and given the evidence of their 

reactivity to deafferentation, it may be possible to influence their emergent rewiring and migration 

habits.102 
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